Chapter 4: Exercises

1) Look at the topics and research questions in Table 4.14. Decide if the linguistic feature research design is appropriate (YES/NO). If yes, define the appropriate lexico-grammatical frame. The first row was completed for you as an example.

Table 4.14 Appropriate research design							
TOPIC: Research question	Linguistic features (examples)	Linguistic feature research design?	Lexico- grammatical frame				
DATIVE ALTERNATION: What factors have an effect on dative alternation in English?	She handed <u>the student</u> the book.	YES	All dative constructions.				
	She hanaea the book <u>to the</u> student						
A/AN ALTERNATION: When is a non- standard version of the indefinite article (<i>a</i> before a word beginning with a vowel) used in spoken English?	an <u>a</u> pple, a <u>a</u> pple						
SWEARWORDS: Do speakers use more strong or weak swearwords? GENITIVE ALTERNATION: What	<i>fuck, cunt, motherfucker</i> etc. vs. <i>damn, crap, hell etc.</i> president <u>'s</u> speech,						
factors influence the choice between <i>s</i> - and <i>of</i> -genitive?	the speech <u>of</u> the president						
EPISTEMIC MARKERS: Does corpus data support the hypothesis that 'we	This is <u>certainly t</u> he case.						
only say we are certain when we are not' (Halliday)?	This is <u>maybe t</u> he case.						
ATTENDED/UNATTENDED <i>THIS:</i> What factors influence the presence	<u>This</u> is an example.						
of a noun after <i>this</i> ?	<u>This sentence</u> is an example.						

2) Analyse the following cross-tab table: Add row and column totals as well as the grand total. Is there a difference in the use of *must, have to* and *need to* between British and American English? Add the percentages that will help you answer this question and calculate the chi-squared test (with raw frequencies).

○ PHOTOCOPIABLE

Variety		Total		
	must	have to	need to	
American	352	355	201	
British	448	405	190	
Total				

3) Interpret the following mosaic plot. It displays the use of three modal expressions of strong obligation (must, have to and need to) in BE06, a one-million-word corpus of written British English. The genres displayed are academic writing ('Acad'), fiction ('Fiction'), general prose ('General') and newspapers ('Press').

Figure 4.8 Must, have to and need to in British English (BE06)

4) Interpret the following models, outcomes of logistic regression, that come from a study of modal expressions of strong obligation. The study was guided by the following research question: In what contexts do speakers use must as opposed to semi-modals of strong obligation (have to and need to)?

The following variables were coded in the dataset:

- Outcome variable: *must* vs. *have to* and *need to* combined (baseline).
- Predictor 1 (Variety): British vs. American (baseline).
- Predictor 2 (Genre): fiction vs. general prose vs. press vs. academic writing (baseline).
- Predictor 3 (Subject): I vs. you vs. other subject (baseline).

Model1: main effect 'Variety'

Overall model statistics: Likelihood ratio test (LL): 3.52 (p = 0.061) -> NOT SIGNIFICANT; C-index: 0.52 -> NOT ACCEPTABLE; Nagelkerke R²: 0; AIC: 2641.65

Coefficients:

	Estimate	Standard	Z value	p-value	Estimate	95% CI	95% CI
	(log odds)	Error	(Wald)		(odds)	lower	upper
(Intercept)	-0.457	0.068	-6.711	0.000	0.633	0.554	0.723
VarietyB_BR	0.173	0.092	1.875	0.061	1.189	0.992	1.426

Model2: main effects 'Variety', 'Genre'

Overall model statistics: Likelihood ratio test (LL): 54.49 (p < 0.001) -> SIGNIFICANT; C-index: 0.6 -> NOT ACCEPTABLE; Nagelkerke R²: 0.04; AIC: 2596.67

Coefficients:

Estimate	Standard	Z value	p-value	Estimate	95% CI	95% CI
(log odds)	Error	(Wald)		(odds)	lower	upper
-0.027	0.147	-0.184	0.854	0.973	0.729	1.300
0.163	0.094	1.738	0.082	1.177	0.980	1.416
-0.870	0.165	-5.277	0.000	0.419	0.303	0.579
-0.172	0.157	-1.092	0.275	0.842	0.618	1.146
-0.529	0.185	-2.860	0.004	0.589	0.410	0.846
	Estimate (log odds) -0.027 0.163 -0.870 -0.172 -0.529	Estimate Standard (log odds) Error -0.027 0.147 0.163 0.094 -0.870 0.165 -0.172 0.157 -0.529 0.185	EstimateStandardZ value(log odds)Error(Wald)-0.0270.147-0.1840.1630.0941.738-0.8700.165-5.277-0.1720.157-1.092-0.5290.185-2.860	EstimateStandardZ valuep-value(log odds)Error(Wald)-0.0270.147-0.1840.8540.1630.0941.7380.082-0.8700.165-5.2770.000-0.1720.157-1.0920.275-0.5290.185-2.8600.004	EstimateStandardZ valuep-valueEstimate(log odds)Error(Wald)(odds)-0.0270.147-0.1840.8540.9730.1630.0941.7380.0821.177-0.8700.165-5.2770.0000.419-0.1720.157-1.0920.2750.842-0.5290.185-2.8600.0040.589	EstimateStandardZ valuep-valueEstimate95% Cl(log odds)Error(Wald)(odds)lower-0.0270.147-0.1840.8540.9730.7290.1630.0941.7380.0821.1770.980-0.8700.165-5.2770.0000.4190.303-0.1720.157-1.0920.2750.8420.618-0.5290.185-2.8600.0040.5890.410

◎ PHOTOCOPIABLE

Model3: main effects 'Variety', 'Genre' plus interactions

Overall model statistics: Likelihood ratio test (LL): 75.54 (p < 0.001) -> SIGNIFICANT; C-index: 0.61 -> NOT ACCEPTABLE; Nagelkerke R²: 0.05; AIC: 2581.63

Coefficients:

	Estimate	Standard	Z value	p-value	Estimate	95% Cl	95% Cl
	(log odds)	Error	(Wald)		(odds)	lower	upper
(Intercept)	-0.027	0.147	-0.184	0.854	0.973	0.729	1.300
VarietyB_BR	-0.857	0.288	-2.979	0.003	0.424	0.240	0.742
GenreB_Fiction	-1.581	0.238	-6.646	0.000	0.206	0.128	0.326
GenreC_General	-0.578	0.225	-2.573	0.010	0.561	0.359	0.868
GenreD_Press	-1.166	0.266	-4.387	0.000	0.312	0.184	0.522
VarietyB_BR:GenreB_Fiction	1.440	0.337	4.275	0.000	4.221	2.190	8.214
VarietyB_BR:GenreC_General	0.893	0.321	2.785	0.005	2.443	1.308	4.605
VarietyB_BR:GenreD_Press	1.319	0.376	3.506	0.000	3.738	1.796	7.852

Model4: main effects 'Variety', 'Genre', 'Subject' plus 'Variety', 'Genre' interactions

Overall model statistics: Likelihood ratio test (LL): 145.56 (p < 0.0001) -> SIGNIFICANT; C-index: 0.66 -> NOT ACCEPTABLE; Nagelkerke R²: 0.1; AIC: 2515.61

Coefficients:

	Estimate	Standard	Z value	p-	Estimate	95% Cl	95% Cl
	(log	Error	(Wald)	value	(odds)	lower	upper
	odds)						
(Intercept)	0.542	0.200	2.714	0.007	1.720	1.168	2.561
VarietyB_BR	-0.930	0.290	-3.210	0.001	0.395	0.222	0.693
GenreB_Fiction	-1.318	0.242	-5.441	0.000	0.268	0.165	0.428
GenreC_General	-0.450	0.228	-1.974	0.048	0.638	0.406	0.993
GenreD_Press	-1.191	0.268	-4.445	0.000	0.304	0.179	0.511
SubjectB_I	-1.084	0.174	-6.232	0.000	0.338	0.239	0.472
SubjectC_you	-0.917	0.158	-5.794	0.000	0.400	0.291	0.542
VarietyB_BR:GenreB_Fiction	1.482	0.340	4.353	0.000	4.400	2.267	8.620
VarietyB_BR:GenreC_General	0.952	0.324	2.941	0.003	2.592	1.379	4.915
VarietyB_BR:GenreD_Press	1.490	0.379	3.927	0.000	4.438	2.118	9.384

PHOTOCOPIABLE

Brezina, V. (2018). <u>Statistics in Corpus Linguistics: A Practical</u> <u>Guide.</u> Cambridge: Cambridge University Press.

Do you use language corpora in your research or study, but find that you struggle with statistics? This practical introduction will equip you to understand the key principles of statistical thinking and apply these concepts to your own research, without the need for prior statistical knowledge. The book gives step-by-step guidance through the process of statistical analysis and provides multiple examples of how statistical techniques can be used to analyse and visualise linguistic data. It also includes a useful selection of discussion questions and exercises which you can use to check your understanding.

The book comes with a Companion website, which provides additional materials (answers to exercises, datasets, advanced materials, teaching slides etc.) and <u>Lancaster Stats Tools online</u>, a free click-and-analyse statistical tool for easy calculation of the statistical measures discussed in the book.

